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Abstract: The atomic valence-shell Hartree-Fock orbitals of atoms in the same column of the periodic table 
are shown to be of at least the same size and, in a number of cases, to be nearly identical. This is done by com­
paring graphs of the Hartree-Fock orbitals and by calculating various energy integrals with them. The calcula­
tions have been carried out for all elements in the first four periods of the periodic table except the transition ele­
ments and for their singly charged negative ions. Before the comparisons are made, the valence orbitals of an 
atom are orthogonalized to the core orbitals of the atom lying below it in the periodic table, with whose valence 
orbitals the comparison is to be made. This causes the valence orbitals of the first atom to take on the same 
nodal structure as those of the second. It is shown that the valence orbitals of two atoms when compared in this 
way will be nearly identical if their ionization potentials are nearly equal, or if their Hartree-Fock valence-orbital 
energies are nearly equal. 

I t is shown in this paper that the valence-shell Har­
tree-Fock orbitals of atoms lying in the same col­

umn of the periodic table can be remarkably similar. 
The orbitals appear to reflect the chemical periodicity 
expressed by the periodic table. The similarities can 
be seen directly by comparing the orbitals graphically, 
and indirectly by comparing integrals calculated with 
the orbitals. This has been done for nearly all of the 
elements in the first four periods of the periodic table 
and their singly charged negative ions. The transition 
elements are the only ones omitted. That the Hartree-
Fock valence-shell orbitals should exhibit such a chem­
ical periodicity is believed to be of fundamental impor­
tance. 

The importance of this property of Hartree-Fock or­
bitals lies in its practical, conceptual, and philosophical 
implications. The practical implication is that the cal­
culation of molecular wave functions might be simplified 
considerably. This implication has already been dis­
cussed2 in some detail in a more general context. The 
connection between that discussion and this paper will 
be made in a later section. The conceptual implication 
is that the interpretation and discussion of molecular 
wave functions in terms of atomic-like or localized or­
bitals and the periodic table, may be numerically justi­
fiable in terms of the properties of Hartree-Fock or­
bitals. Furthermore the similarity of atomic valence 
shells implies that chemical systematics, the essence of 
chemistry, may mean more in quantum mechanics than 
that the valence shells of congeners have the same num­
ber of electrons. The philosophical implication is that 
chemical systematics may be found within quantum 
mechanics and that it need not be imposed on quantum 
mechanics as it has been in many semiempirical theories. 
The calculations reported in this paper are a first step 
toward understanding how chemical systematics is de­
termined by quantum mechanics. 

A more pragmatic justification for the study reported 
here lies in the complexity of the Hartree-Fock theory. 

(1) Supported by National Science Foundation Grant No. GP2837 
when the author was at the Pennsylvania State University, by the 
Atomic Energy Commission when the author was a visiting scientist at 
Argonne National Laboratory during the summers from 1966 to 1968, 
by the Research Council of Rutgers University, and by a generous 
grant of computer time from Rutgers University. 

(2) W. H. Adams, J. Chem. Phys., 42, 4030 (1965). 

The Hartree-Fock orbitals are self-consistent solutions 
to a set of nonlinear integrodifferential equations; they 
are not determined by fitting parameters to experiment. 
There is still much to be learned about such equations 
and the self-consistency process. Now that accurate 
Hartree-Fock orbitals are available for the elements in 
the first four periods of the periodic table,3 we can learn 
empirically a little more about Hartree-Fock theory by 
experimenting with these orbitals, and in turn learn 
more about finding chemistry in quantum mechanics. 

In this study the valence-shell orbitals are compared 
with a minimum of theoretical and mathematical ma­
nipulation. The goal of this paper is to establish the 
similarities of atomic valence-shell orbitals and under­
stand why they are similar. The comparison is always 
of orbitals of congeners, i.e., of atoms in the same col­
umn of the periodic table. The valence-shell Hartree-
Fock orbitals of each atom are compared with the or­
bitals of all congeners lying below them in the first four 
periods. Before each comparison is made, the valence 
orbitals of the first atom are Schmidt-orthogonalized to 
the core orbitals of the congener, then normalized. 
This is done simply because the valence-shell orbitals 
of the second atom are orthogonal to its core orbitals 
and normalized. This process of Schmidt orthogonal-
ization, normalization, and substitution is called transfer 
by core orthogonalization. Orbitals that have been 
transferred in this manner are referred to as transfer or­
bitals. The orbitals are compared graphically, so that 
point-by-point one can see qualitatively how similar the 
orbitals are, and where they differ most. A quantitative 
comparison is made by replacing the valence-shell or­
bitals of an atom A by the transfer orbitals from a con­
gener B lying above it in the periodic table, then calcu­
lating all of the integrals needed to determine the total 
energy of atom A. The transferred orbitals are also 
compared to the valence orbitals of the atom to which 
the transfer is made by calculating the overlap integral 
of the orbitals. The overlap will be less than one un­
less the orbitals are identical. This is a convenient but 
rough test of the transferability of the valence-shell or-

(3) (a) E. Clementi, IBM J. Res. Develop., 9, 2 (1965); (b) P. S. Bagus 
and T. L. Gilbert have duplicated or improved slightly on dementi's 
functions (private communication). 
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bitals. These several simple, direct methods of com­
paring the valence-shell Hartree-Fock atomic orbitals 
are used to establish the basic similarity of the orbitals 
of congeners and the remarkable similarities of third-
and fourth-period congeners. 

In the next section the programs that were used are 
described and their accuracy indicated. The following 
section summarizes the results of calculations us­
ing dementi 's neutral-atom Hartree-Fock orbitals.3a 

Then the same thing is done for the singly charged nega­
tive atomic ions. The relation of the orbital periodic­
ities is discussed and explained in the next section. 
This section also contains a discussion of how the results 
of this study are related to the work of others, of how the 
present study can be refined, of the results of one such 
refined calculation, and of the relationship between 
atomic valence-orbital transferability and the trans­
ferability of localized orbitals from molecule to mole­
cule. 

Computer Programs 

A set of FORTRAN computer programs has been 
written to carry out the various comparisons of valence-
shell atomic orbitals. One program adjusts the co­
efficients given by Clementi3a so that the orbitals will be 
orthonormal to seven significant figures. The second 
program transfers the valence-shell orbitals from one 
atom to another by core orthogonalization, then makes 
graphs of the valence orbitals and the transferred orbi­
tals. The third program also transfers valence-shell or­
bitals, then calculates the total energy of the atoms with 
the transferred and with the true valence-shell orbitals. 
The output from this program includes all of the in­
tegrals needed in the calculation of the total energy. 
This last program is of course the most elaborate of the 
three. 

The first program was needed because dementi 's 
tables give the atomic eigenvectors to only five signifi­
cant figures. Using the tabulated eigenvectors, it is not 
possible to reproduce dementi's total energies for the 
fourth-period elements to five significant figures. Other 
integrals show a corresponding loss of accuracy. A 
simple expedient to regain the lost accuracy is to nor­
malize the lowest energy eigenvector of each symmetry 
to the accuracy allowed by the computer, then to 
Schmidt-orthogonalize the next lowest energy eigen­
vector to the first and normalize that vector, and so on 
through the valence level.4 The reorthonormalized 
vectors were specified to eight decimal places for these 
calculations, since the principal machine used was an 
IBM 7040. With these vectors dementi's total ener­
gies could be reproduced to seven significant figures. 
This program was also used to check that the data cards 
were correctly punched. This was accomplished by 
requiring that the starting vectors be normalized to a 
degree consistent with the five-decimal accuracy of the 
tabulated orbitals.33 

The second program is also a quite simple one. It 
transfers the valence orbitals of each symmetry from 
atom A to a congener B lying further down the periodic 
table, by orthogonalizing the A vectors to the B core 
vectors, then normalizing the resultant vectors. The 
radial functions of the valence shell are then tabulated 
as a function of the radial distance r from the nucleus. 

(4) This procedure was suggested by Dr. P. S. Bagus. 

Then for each symmetry a graph is made of the A and 
B radial functions and of the transferred radial function 
as functions of r. The program was written for an IBM 
1620 with an attached CALCOMP plotter.5 The program 
has been checked by comparing the calculated table of 
radial functions for several atoms with published tables 
for these atoms,6 and by hand calculations. 

The third program was the most difficult to write and 
debug. It calculates the total energy of each atom in a 
column of the periodic table, does all possible transfers 
of valence-shell orbitals down the column, and calcu­
lates the energy of each atom with the transferred val­
ence orbitals substituted for its own. The program 
can handle up to five atoms in a column. All the in­
tegrals needed in the evaluation of the total energy as 
well as various important sums of these integrals and 
the overlap between the transferred and the true val­
ence-shell orbitals are printed out and are punched on 
cards. The integrals are evaluated analytically using 
the formulas for the various atomic integrals over 
Slater basis functions. The program allows for the or­
bitals of any atom to be specified as linear combinations 
of up to 12 s, 10 p, and 8 d Slater orbitals. The accuracy 
of the program has been checked by comparing the total 
energies and the orbital eigenvalues to those tabulated 
by Clementi,3a and by checking, for several atoms, each 
integral calculated with Watson's orbitals against the 
integrals he tabulated.7 Disagreement between the cal­
culated values and the tabulated ones was confined al­
ways to the last or, for the larger integrals, next-to-last 
significant figure tabulated. This accuracy is quite 
sufficient for the purpose here. It also justifies the 
procedure used to reorthonormalize the tabulated 
eigenvectors. 

The only unusual feature of the third program in­
volves the calculation and utilization of the two-electron 
integrals. In calculations involving transfers of s and 
p valence orbitals from the third to the fourth period, 
over 127,000 distinct two-electron integrals over the 
Slater basis sets have to be evaluated. The contribu­
tion of each distinct integral over the basis to the Slater 
F and G integral over the Hartree-Fock and transferred 
orbitals is evaluated before the next integral over the 
basis set is calculated. (This was a necessity in the ear­
liest versions of the program, since they were written 
for the Pennsylvania State University's IBM 7074, which 
had only a 10K core. In the IBM 7040 version the 
integrals over the basis set are temporarily stored in 
core until there are 10,000 of them; then they are put on 
tape. The integrals are then available for use in a more 
sophisticated transferability calculation, which will be 
described elsewhere.) Since more than 127,000 in­
tegrals have to be combined, there is a good chance that 
roundoff and truncation errors can invalidate the calcu­
lations. On the IBM 7040 this happened. The diffi­
culty was overcome by putting large contributions to 
the Slater integrals over the Hartree-Fock and transfer 
orbitals into one sum, the small contributions into a 
second sum, and, as the last step in the calculation, com­
bining the two sums.8 

(5) These calculations were done at the Argonne National Labora­
tory. 

(6) C. C. J. Roothaan, L. M. Sachs, and A. Weiss, ReD. Mod. Phys., 
32,186(1960). 

(7) R. E. Watson, Massachusetts Institute of Technology Solid State 
and Molecular Theory Group, Technical Report 12, June 15, 1959 
(unpublished). 
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The formal mathematical analysis on which the third 
program was based was derived from various sources. 
The one-electron integrals are evaluated using the for­
mulas given by Roothaan and Bagus.9 The analytic 
formulas for the two-electron integrals over the basis 
set were developed by me, so that the program could cal­
culate the Slater F and G integrals from them. The 
total energy is calculated from the one-electron and two-
electron integrals according to the analysis given by 
Slater.10 The orbital energies are evaluated as expecta­
tion values of the Hartree-Fock Hamiltonians, not by 
diagonalizing the closed- and open-shell Hamiltonians. 
It is gratifying to find that the orbital energies calculated 
in this way, using the reorthonormalized vectors, agree 
with the values given by Clementi. 

Neutral Atoms 

There is an infinite number of ways in which the 
Hartree-Fock valence-shell orbitals of congeners might 
be compared. The ways chosen to be used are ones 
which seem to make very direct comparisons, or which 
answer questions raised by the first comparisons. Be­
fore discussing the results of each of the numerical ex­
periments described here, an indication is given of the 
reason that calculation was made. The discussion is 
meant to bring out the salient features of the tables and 
graphs. 

In Table I the portion of the periodic table pertinent 
to this study is given in a form which deviates from the 
usual form in only one respect. The deviation occurs 

Table I. Periodic Table of the Elements As Used in This Study 

Period 

1 
2 
3 
4a 
4b 

I 

H 
Li 
Na 
K 
Cu 

II 

Be 
Mg 
Ca 
Zn 

III 

B 
Al 

Ga 

IV 

C 
Si 

Ge 

V 

N 
P 

As 

VI 

O 
S 

Se 

VII 

F 
Cl 

Br 

VII 

He 
Ne 
Ar 

Kr 

in the fourth period. K and Ca have been placed in a 
row by themselves, with Cu and Zn directly below them. 
This has been done because the elements Cu through 
Kr in their ground states have the same core configura­
tion, i.e., (ls)2(2s)2(2p)6(3s)2(3p)6(3d).8 The elements 
K and Ca of course have no occupied d orbitals. In 
addition Cu and Zn have the same outer-shell configura­
tion as the other elements in the column to which they 
have been assigned. Thus in terms of electronic struc­
ture it makes sense to group the elements this way, al­
though chemically we know that Cu and Zn are quite 
different from the elements with which they are grouped. 
This portion of the periodic table will be referred to in 
each of the following calculations. The calculations 
have been carried out for all those symmetry states de­
rivable from the ground-state configuration for which 
Clementi has calculated Hartree-Fock orbitals. 

The first comparison of the valence orbitals of con­
geners is relatively crude, although it has certain ad-

(8) This technique has been described in an article by I. Shavitt in 
"Methods in Computational Physics," Vol. II, Academic Press, New 
York, N. Y., 1963, p 1. 

(9) C. C. J. Roothaan and P. S. Bagus in "Methods in Computational 
Physics," Vol. II, Academic Press, New York, N. Y., 1963, p 47. 

(10) J. C. Slater, "Quantum Theory of Atomic Structure. II," 
McGraw-Hill Book Co., Inc., New York, N. Y., 1960. 

vantages. The valence-shell orbitals of each symmetry 
for an atom Aj in the /th row are transferred by core 
orthogonalization (see earlier text) to a congener A^ in 
the y'th row of the periodic table (J > i); then the over­
lap of the transferred orbital \pt(i-*j) and the true val­
ence-shell orbital I/VO) are calculated. If \pT(i-*-j) and 
\pv(j) are identical then the magnitude of the overlap 
will be one. If the orbitals differ, then as is well known, 
the overlap integral will be less than one in magnitude, 
i.e. 

\(+T(i-*j)\Mj))\ < l 

One advantage of looking at this integral is that it has 
an optimum value which is independent of the atoms 
that are being compared, so that all pairs are compared 
on an equal basis. The second advantage is that the 
orbitals are compared primarily where they are largest, 
since those regions contribute most strongly to the in­
tegral. 

In Table II the integrals K^TO'-*-/)! ̂ v(Z))I f° r s or­
bitals are given; in Table III, those for p orbitals. H 
and He have been omitted from the tables. The former 
was omitted because its overlap with the valence or­
bitals of its congeners was in no case larger than 0.84, 
showing that it is quite different from its congeners. 
On the other hand the He Is orbital can be quite similar 
to the valence s orbitals of its congeners, but it of course 
has no p valence orbital as does its congeners, so that 
their valence shells cannot be fully compared. (In the 
interest of completeness, the overlap integrals involving 
He are He-*-Ne, 0.98534; He ->- Ar, 0.99265; He-*-
Kr, 0.98635.) The Roman numeral table headings re­
fer to the colums of the periodic table given in Table I. 
The spectroscopic symbol in parentheses which follows 
the Roman numeral indicates the symmetry of the 
ground-state configuration recorded in that column. 
The row headings indicate the transfers that were made 
by giving the period labels from Table I. 

The basic implications of the two tables are that sec­
ond- and third-period congeners have valence orbitals 
of about the same size, and that period 3 and period 4b 
congeners are very similar in columns III through VI. 
The largest overlap integrals are found between ^ T -
(Si-»-Ge) and ^v(Ge) for both s and p orbitals. The 
problem now is to determine what the various values of 
(fr | i/v) imply. 

A direct way to see what the overlap integral (I/'TI'/'V) 
means is to plot \f/T and \pv so that they can be compared 
point by point. Since we are dealing with atoms, it is 
only necessary to plot the radial functions for each 
symmetry. In the usual fashion33 the orbitals are 
written as functions of spherical coordinates r, d, <f> with 
the origin at the atomic nucleus. 

*•.!» = Rni(r)Q,m(6,<t>) 

The function 0 ; m is the normalized spherical harmonic. 
The radial function Rni(r) is normalized, i.e. 

r"|RB,(r)|»r*dr = 1 

The graphs have plots of 

Pn Ir) = rRnl(r) 
as a function of r. The graphs presented are represent­
ative of those obtained. They indicate quite clearly 
what the overlap integrals in Tables II and III imply. 

Journal of the American Chemical Society / 92:8 / April 22, 1970 



Table II. Overlap Integrals <^T(/-V)I^V(/)> for s Orbitals of Neutral Atoms 

2201 

I II III IV(3P) IV(1D) V(4S) V(2D) 

2-3 0.99500 0.97385 0.95734 0.94420 0.94349 0.93384 0.93305 
2-4a 0.94980 0.91339 
3-4a 0.96675 0.95748 
2-4b 0.98499 0.99676 0.97797 0.95791 0.95727 0.94183 0.94107 
3-4b 0.96376 0.98880 0.99783 0.99946 0.99946 0.99755 0.99751 
4a-4b 0.81345 0.83313 

V(2P) VI(3P) VI(1D) VI(1S) VII VIII 

2-3 0.93254 0.92487 0.92442 0.92382 0.91817 0.91313 
2-4a 
3-4a 
2-4b 0.94055 0.92917 0.92879 0.92824 0.92086 0.91584 
3-4b 0.99748 0.99384 0.99383 0.99379 0.98943 0.98473 

4a-4b 

Table III. Overlap Integrals (^T(J-V) I ̂ v(/)> for p Orbitals of Neutral Atoms 

III IV(3P) IV(1D) V(4S) V(2D) V(2P) 

2-3 0.92623 0.92620 0.93179 0.92603 0.93116 0.93447 
2-4a 
3-4a 
2-4b 0.93386 0.92470 0.93046 0.91860 0.92446 0.92818 
3-4b 0.99987 0.99899 0.99900 0.99603 0.99621 0.99631 
4a-4b 

VI(3P) VI(1D) VI(1S) VII VIII 

2-3 0.93209 0.93437 0.93762 0.93513 0.93718 
2-4a 
3-4a 
2-4b 0.92290 0.92563 0.92958 0.92574 0.92865 
3-4b 0.99254 0.99264 0.99289 0.98874 0.98501 
4a-4b 

In Figure 1 the Li 2s and Na 3s radial functions P(r) 
are plotted against r. It is quite clear that there are im­
portant differences between these two functions for 
small r, but that for large r the two functions are nearly 
equal. (For this reason the other graphs are given on 
a larger scale, with the tails of the functions cut off.) 
The Li -* Na transfer orbital differs from the Na 3s on 
the graph for large r to the same degree that the Li 2s 
did, but for small r it has nodes in approximately the 
same places as the Na 3s. Thus as one would have ex­
pected, transfer by core orthogonalization changes a 
radial function primarily at small r, i.e., in the atomic 
core region. The magnitude of the maximum and the 
minimum of the Na 3s function in the core region are 
overestimated by the Li -*• Na transfer orbital. Never­
theless the transfer orbital and the Na 3s orbital are, in 
the opinion of the author, surprisingly similar. 

The transfer which produced the largest overlap in­
tegrals in Tables II and III was from Si to Ge. In 
Figures 2 and 3 are displayed, respectively, the s and p 
orbitals for the atoms in the 3P state. The Si 3s orbital 
is clearly more accurately transferable to Ge than is the 
Si 3p. Core orthogonalization has put nodes into the 
radial functions in very nearly the correct positions. In 
Figures 4 and 5 similar results are given for P and As. 
The overlap integrals of the P -»• As s and p transfer or­
bitals with the As 4s and 4p orbitals, respectively, are the 
second-largest given in Tables II and III. The accuracy 
of the transfer in this case appears in the graphs to be 
not so good as in the Si -*• Ge case. 

The meaning of overlaps of the order of magnitude 
of 0.995 and larger should be clear now. When the 
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overlap of transferred and true valence orbitals is of the 
order of magnitude of 0.96, the most that can be said is 
that the pairs of orbitals are roughly the same size. 

P(r) 

Figure 1. Radial parts of the Li 2s and Na 3s Hartree-Fock orbi­
tals, and the Li -*• Na transfer orbital. 

Overlaps this small are typical for second- to third-period 
transfers. In Figures 6 and 7 a comparison of the C, 
Si, and C -*• Si radial functions is made. 
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P(r) 

r (a.u.) 
5-0 

Figure 2. Radial parts of the Si 3s and Ge 4s Hartree-Fock orbi­
tals for the 3P state, and the Si -* Ge s transfer orbital. 

r (a.u.) 

Figure 4. Radial parts of the P 3s and As 4s Hartree-Fock orbitals 
for the 4S state, and the P -»• As s transfer orbital. 

PCr) 

r (a.u.) 
5-0 

Figure 3. Radial parts of the Si 3p and Ge 4p Hartree-Fock orbi­
tals for the 3P state, and the Si -» Ge transfer orbital. 

r (a.u.) 

Figure 5. Radial parts of the P 3p and As 4p Hartree-Fock orbi­
tals for the 4S state, and the P -» As p transfer orbital. 

The conclusion that may be drawn from Tables II 
and III and the graphs is that for transfers from the 
third period to period 4b in columns III to VII, the 
transfer orbitals are qualitatively good approximations 
to the true valence orbitals of period 4b. This raises 
the question of how accurate an approximation they 
are when it comes to evaluating integrals. 

The first quantitative comparison is between the 
valence-orbital eigenvalues and the expectation values 
of the Fock operators calculated with the transferred 
orbitals. (These should be good approximations to the 
eigenvalues one would get using as basis set the valence 
orbitals of one atom and the core orbitals of its con­
geners.) These energies are quite important since they 
appear in both the ionization potentials and the total 
energies. In addition, in these integrals errors in the 
kinetic energy are balanced against those in the nuclear 
potential energy and the coulomb and exchange in­
tegrals, thus giving an overall picture of the accuracy 

to which the transferred orbitals approximate the true 
orbitals. These integrals are quite sensitive to errors in 
the orbitals, but not so sensitive as the kinetic energy 
integrals. Energy calculations have been carried out 
only in those cases in which K^TO'-*"./')! ̂ v(Z))I > 0.99 
for the valence-shell orbitals. (This cutoff value of the 
overlap was determined arbitrarily on the basis of ex­
perience, as the point beyond which the integrals would 
be quite inaccurate.) This condition was satisfied by 
transfers from period 3 to period 4b in columns HI-VI 
of the periodic table. In column I, however, only the 
transfer from period 2 to period 3 had an overlap greater 
than 0.99. In column II of Table II the only transfer 
having an overlap greater than 0.99 was Be -*• Zn. The 
orbital energies in columns I and II in Table IV are for 
the Li -»• Na and Be -*• Zn transfers. The results of the 
orbital energy calculations are recorded in Tables IV 
and V. 
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Row 3 
Row 4b 
3-4b 

Row 3 
Row 4b 
3-4b 

I" 

-0.1963 
-0.1821 
-0.1635 

V(2D) 

-0.7065 
-0.6952 
-0.5000 

IP 

-0.3093 
-0.2925 
-0.2615 

V(2P) 

-0.7134 
-0.7016 
-0.5056 

III 

-0.3935 
-0.4245 
-0.3783 

VI (8P) 

-0.8796 
-0.8373 
-0.5102 

IV (3P) 

-0.5399 
-0.5533 
-0.4515 

VI (1D) 

-0.8859 
-0.8429 
-0.5151 

IV (1D) 

-0.5476 
-0.5609 
-0.4584 

VI (1S) 

-0.8957 
-0.8517 
-0.5226 

V(4S) 

-0.6964 
-0.6859 
-0.4917 

" These data are for Li, Na, and Li -*• Na. h These data are for Be, Zn, and Be -*• Zn. 

Table V. Neutral Atom Valence Obital Energies (au) for p Symmetry 

Row 3 
Row 4b 
3-4b 

Row 3 
Row 4b 
3-4b 

III 

-0.2102 
-0.2085 
-0.2144 

V(2P) 

-0.3243 
-0.3050 
-0.2346 

IV (3P) 

-0.2971 
-0.2873 
-0.2680 

VI (3P) 

-0.4374 
-0.4028 
-0.2520 

IV (1D) 

-0.2609 
-0.2518 
-0.2326 

VI (1D) 

-0.4154 
-0.3822 
-0.2318 

V(4S) 

-0.3917 
-0.3695 
-0.2982 

VI(1S) 

-0.3835 
-0.3524 
-0.2029 

V(2D) 

-0.3506 
-0.3302 
-0.2594 

The general picture that emerges from Tables IV and 
V is that the orbital energies are quite sensitive to small 
errors in the orbitals. In every case the energy calcu­
lated with the transferred orbitals is smaller than the 
true energy. (It is interesting to note that the energies 
calculated with the nonorthogonalized orbitals are gen-

P(D 

(a.u.) 

Figure 6. Radial parts of the C 2s and Si 3s Hartree-Fock orbi­
tals for the 3P state, and the C -*- Si s transfer orbital. 

erally closer to the true values than those calculated 
with the orthogonalized orbitals. However, they must 
be orthogonalized to the cores.) The greatest accuracy 
for s orbitals is about 10%, for p orbitals about 3%. 
The largest errors are of the order of 50 %. In general 
it does not appear that the transferred orbitals can be 
used in place of the true valence-shell orbitals to calcu­
late the valence orbital energies of an atom accurately. 

Similar conclusions can be drawn from the kinetic 
energy integrals presented in Tables VI and VII. These 

integrals are very inaccurate, being always too large by 
at least 40%. Clearly there are gross differences be­
tween the transferred and true valence-shell orbitals as 
far as the kinetic energy operator is concerned. How-

r (a.u.) 
5-0 

Figure 7. Radial parts of the C 2p and Si 3p Hartree-Fock orbi­
tals for the 3P state, and the C -* Si p transfer orbital. 

ever, we know from the graphs that when (I^TO'-*"./)! 
"AvO))I > 0.995 the big differences between the trans­
ferred and true orbitals occur in the core region. This 
point will be taken up in a later section. 

The next integrals to be compared are the Slater 
integrals F°(nl,nl) calculated with the transferred and 
true valence-shell orbitals. Let r> be the larger of the 
two variables n and n; then 

FXnUnI)= P d W f diyslR. iCrOllR. iC^l ' r 
J o J o ~> 
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Table VI. Neutral Atom Valence Orbital Kinetic Energies (au) 
for s Symmetry 

Row 3 
Row 4b 
3-4b 

Row 3 
Row 4b 
3-4b 

1« 

0.2088 
0.2673 
0.5954 

V(SD) 

1.9035 
2.5128 
5.3882 

IP 

0.5011 
1.0219 
1.4693 

V( 2P) 

1.9125 
2.5225 
5.4153 

HI 

0.9352 
1.5000 
2.0788 

VI (8P) 

2.4717 
3.0558 
7.5210 

IV (3P) 

1.3856 
1.9879 
3.5494 

VI (1D) 

2.4795 
3.0664 
7.5462 

IV (1D) 

1.3956 
2.0011 
3.5763 

VI (1S) 

2.4922 
3.0799 
7.5879 

V(4S) 

1.8903 
2.4977 
5.3489 

0 These data are for Li, Na, and Li -»• Na. h These data are for 
Be, Zn, and Be -* Zn. 

Table VII. Neutral Atom Valence Orbital Kinetic Energies (au) 
for p Symmetry 

Row 3 
Row 4b 
3-4b 

Row 3 
Row 4b 
3-4b 

HI 

0.5714 
0.7735 
0.8932 

V( 2P) 

1.3182 
1.5762 
2.7191 

IV (3P) 

0.9406 
1.1908 
1.7343 

VI(3P) 

1.8067 
2.0618 
4.0216 

IV( 1 D) 

0.9107 
1.1527 
1.6802 

VI( 1 D) 

1.7963 
2.0505 
3.9990 

V(4S) 

1.3638 
1.6309 
2.8114 

VI (1S) 

1.7804 
2.0341 
3.9645 

V( 2 D) 

1.3363 
1.5986 
2.7559 

Table IX. Slater Integrals F° over p Valence Orbitals 
of Neutral Atoms (au) 

Row 3 
Row 4b 
3-4b 

Row 3 
Row 4b 
3-4b 

III 

0.26459 
0.26560 
0.26319 

V(2P) 

0.37863 
0.34991 
0.37376 

IV (3P) 

0.32961 
0.31650 
0.32673 

VI(3P) 

0.44068 
0.39439 
0.43322 

IV (1D) 

0.32173 
0.30894 
0.31890 

VI (1D) 

0.43740 
0.39141 
0.42994 

V(4S) 

0.39048 
0.36078 
0.38559 

VI (1S) 

0.43227 
0.38688 
0.42481 

V(2D) 

0.38342 
0.35432 
0.37854 

Like the kinetic energy integral, F°(nl,nl) depends only 
on a single orbital. Tables VIII and IX show the values 
which have been calculated. Clearly F0 is much less 
sensitive to details of the orbitals than are the other in­
tegrals considered. The largest error made when the 
transferred orbitals are substituted for the true valence-
shell orbitals is approximately 10 %. The effect of core 
orthogonalization on F0 is small; it changes F0 by 
about 1 %. It is, by the way, only in this case that 
orthogonalization to the core improves the value of the 
integrals. 

The total electronic energies calculated with the true 
Hartree-Fock orbitals and the same energy calculated 

with the transferred orbitals substituted for the true or­
bitals are presented in Table X. Since the total energy 
is relatively insensitive to errors in the wave function, 
it cannot tell one much about the quality of the trans­
ferred orbitals; however, for completeness they obvi­
ously must be included. The smallest error is about 
0.02, the largest about 0.7 au. Considering the mag­
nitude of the errors in the orbital energies and that they 
enter the total energy multiplied by occupation numbers, 
the error in the total energy is reasonable. Note also 
that the energy found with the transferred orbitals is 
always higher than that found when the true valence-
shell orbitals are used.11 This is to be expected of 
course if Clementi's expansion Hartree-Fock orbitals 
are accurate. 

The data displayed in this section are easily summa­
rized. The basic conclusions are that in columns III 
through VIII of the periodic table, the valence-shell or­
bitals of second- and third-period elements are about 
the same size, and that in the same columns the valence-
she 11 orbitals of the third and fourth periods (period 4b in 
Table I) are remarkably similar. The exceptions to 
these conclusions lie in columns I and II of the periodic 
table. The Li 2s and Na 3s orbitals are quite similar; 
the Be 2s and Zn 4s orbitals are also very close. As 

was indicated earlier H is really quite different from its 
congeners, but He is not. The Is He orbital is at least 
about the same size as the valence s orbitals of the other 
rare gases. An attempt is made later in the text to 
understand these results and to correlate them with the 
experimentally known properties of the atoms. 

Negative Atomic Ions 

The same comparisons that were made of the valence-
shell orbitals of the neutral atoms can be made of those 
of the singly charged negative atomic ions. The results 
of this comparison indicate that transferability depends 
little upon the total atomic charge and the tightness with 
which the electrons are bound. Clementi's negative-
ion Hartree-Fock orbitals are used.3a Comparisons 
are made for nearly all of the symmetry states derivable 
from the ground-state configurations of the negative 
ions of atoms in the first four periods of the periodic 
table. 

In Tables XI and XII the overlap integrals (^T-
(i-*-jI^vO')) are given for s and p valence orbitals, re-

(11) In a preliminary report on this work presented at the Edmonton. 
Quantum Chemistry Symposium in Aug 1965, some total energies were 
reported which were significantly lower than Clementi's Hartree-Fock 
energies. At the time it was not clear that my numbers were incorrect. 
Later an error was found in my computer program. 

Table VIII. Slater Integrals F° over s Valence Orbitals of Neutral Atoms (au) 

I" IP III IV(3P) IV(1D) V(4S) 

Row 3 0.23400 0.34323 0.34808 0.41004 0.41114 0.46797 
Row 4b 0.21527 0.31318 0.36401 0.40659 0.40756 0.44549 
3-4b 0.23271 0.33329 0.34658 0.40788 0.40897 0.46501 

V(2D) V(2P) VI(3P) VI(1D) VI(1S) 

Row 3 0.46916 0.47000 0.52544 0.52604 0.52702 
Row 4b 0.44646 0.44713 0.48344 0.48392 0.48468 
3-4b 0.46619 0.46703 0.52152 0.52212 0.52310 

0 These data are for Li, Na, and Li -<• Na. h These data are for Be, Zn, and Be -»• Zn. 
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Period 4b 
3-4b 

Period 4b 
3-4b 

1« 

-161.859 
-161.840 

V(2D) 

-2234.171 
-2233.787 

IP 

-1777.847 
-1777.805 

V(2P) 

-2234.128 
-2233.744 

III 

-1923.260 
-1923.142 

VI (SP) 

-2399.867 
-2399.165 

IV (3P) 

-2075.359 
-2075.166 

VI(1D) 

-2399.818 
-2399.117 

0 In I the data are for Na and Li -* Na. b In II the data are for Zn and Be -»• Zn. 

Table XI. Overlap Integrals (IAT(I-*/')|"/,V(/)> for s Orbitals of Negative Atomic Ions 

I III (3P) III (1D) IV (4S) 

IV (1D) 

-2075.321 
-2075.116 

VI (1S) 

-2399.746 
-2399.045 

IV (2D) 

V(4S) 

-2234.238 
-2233.854 

IV (2P) 

2-3 
2-4a 
3-4a 
2-4b 
3-4b 
4a-4b 

0.99691 
0.97422 
0.97906 
0.98017 
0.96649 
0.86472 

0.96572 

0.98434 
0.99747 

0.96381 

0.98284 
0.99763 

0.95288 

0.96633 
0.99948 

0.95090 

0.96452 
0.99947 

0.95045 

0.96398 
0.99948 

V(8P) V(1D) V(1S) VI VII 

2-3 
2-4a 
3-4a 
2-4b 
3-4b 
4a-4b 

0.94067 

0.94954 
0.99781 

0.93993 

0.94873 
0.99775 

0.93854 

0.94742 
0.99774 

0.93019 

0.93550 
0.99443 

0.92492 

0.92955 
0.99024 

Table XII. Overlap Integrals (M'^-J^vij)) for p Orbitals 
of Negative Atomic Ions 

2-3 
2-4a 
3-4a 
2-4b 
3-4b 
4a-4b 

2-3 
2-4a 
3-4a 
2-4b 
3-4b 
4a-4b 

III (2P) 

0.96148 

0.96314 
0.99970 

V(3P) 

0.95678 

0.95475 
0.99727 

III (1D) 

0.96916 

0.97162 
0.99979 

V(1D) 

0.95912 

0.95761 
0.99735 

IV (4S) 

0.95426 

0.95433 
0.99931 

V(1S) 

0.96291 

0.96214 
0.99749 

IV (2D) 

0.96024 

0.96070 
0.99935 

VI 

0.95698 

0.95427 
0.99432 

IV (2P) 

0.96360 

0.96434 
0.99938 

VII 

0.95646 

0.95401 
0.99110 

spectively. The regularities found for the neutral atoms 
persist. The overlap integrals have nearly all increased, 
but for the most part by less than 1 %. 

So that a comparison can be made with the neutral 
atoms, Figure 8 displays the functions P„i(>) for the Li-

and Na - valence shells and the transfer orbital. Clearly 
the effect of adding an electron has been to make the or­
bitals spread out without greatly altering their close 
resemblance. 

Data to match those for the neutral atoms are pre­
sented in Tables XIII-XIX. Inspection of these results 
show that the extra electron has had but a small effect 
on the transferability of the valence-shell orbitals. The 
regularities found match those found for netural atoms. 
There is accordingly no need to comment on these tables. 

Discussion 
The results displayed earlier clearly show that the 

valence-shell orbitals of second- and third-period ele­
ments are at least of about the same size, and that the 

valence-shell orbitals of third- and fourth-period ele­
ments can be remarkably similar. In this section these 
results are discussed, interpreted, and related to a 
physical property of the atoms. In addition the rela­
tionship of this study to other studies is indicated, and 
some further studies are proposed. 

Figure 8. Radial parts of the Li - 2s and Na - 3s Hartree-Fock 
orbitals, and the Li - -*• Na - transfer orbitals. 

The observed regularities occasionally contradict 
what one might have expected to be observed. In the 
case of the alkali metals, for example, quite different re­
sults were expected. It was anticipated that if the Li 
2s and the Na 3s orbitals were as similar as they turned 
out to be, the Na 3s and K 4s orbitals would be still 
more similar. In all three, at large distances from the 
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Table XUl. Negative Atomic Ion Valence Orbital Energies (au) for s Symmetry 

1» IH(8P) HI(1D) IV(4S) IV(2D) IV(8P) 

Row 3 -0.0145 -0.2080 -0.2308 -0.3015 -0.3200 -0.3338 
Row 4b -0.0126 -0.2390 -0.2615 -0.3194 -0.3377 -0.3517 
3-4b 0.0007 -0.1952 -0.2173 -0.2231 -0.2398 -0.2524 

V(3P) V(1D) V(1S) VI VII 

Row 3 -0.4364 -0.4473 -0.4623 -0.5794 -0.7329 
Row 4b -0.4384 -0.4483 -0.4621 -0.5598 -0.6855 
3-4b -0.2479 -0.2572 -0.2698 -0.2369 -0.1926 

° These data are for Li-, Na -, and Li - -»• Na-. 

Table XIV. Negative Atomic Ion Valence Orbital Energies (au) 
for p Symmetry 

Row 3 
Row 4b 
3-4b 

Row 3 
Row 4b 
3-4b 

III (3P) 

-0 .0198 
-0 .0178 
-0 .0236 

V( 3P) 

-0 .0769 
-0 .0733 
- 0 . 0 0 8 4 

III (1D) 

- 0 . 0 0 5 3 
- 0 . 0 0 3 4 
- 0 . 0 0 8 7 

V( 1 D) 

- 0 . 0 6 4 3 
- 0 . 0 6 0 9 

0.0032 

IV (4S) IV (2D) 

- 0 . 0 6 1 6 -0 .0385 -
- 0 . 0 5 9 0 -0 .0363 -
-0 .0425 - 0 . 0 2 0 0 -

V(1S) VI 

- 0 . 0 4 5 5 -0 .1074 -
- 0 . 0 4 2 4 -0 .1013 -

0.0206 0.0393 

Table XV. Negative Atomic Ion Valence Orbital Kinetic 
Energies (au) for s Symmetry 

Row 3 
Row 4b 
3-4b 

Row 3 
Row 4b 
3-4b 

1« 

0.1011 
0.1306 
0.2878 

V( 3P) 

1.7736 
2.3541 
5.0178 

IH( 3P) IH( 1 D) IV(4S) IV( 2D) 

0.8549 0. 
1.3939 1 
1.8991 1 

8804 1.2675 1.2906 
.4276 1.8337 1.8642 
.9574 3.2434 3.3043 

V( 1 D) V(1S) VI VII 

1.7869 1 
2.3679 2 
5.0563 5 

.8061 2.3304 2.9431 

.3924 2.8905 3.4557 

.1127 7.0884 9.4410 

IV (2P) 

-0.0252 
-0.0237 
-0.0072 

VII 

-0.1499 
-0.1389 

0.1039 

IV (2P) 

1.3070 
1.8874 
3.3476 

" These data are for Li , Na , and Li - —»• Na-. 

Table XVI. Negative Atomic Ion Valence Orbital Kinetic 
Energies (au) for p Symmetry 

Row 3 
Row 4b 
3-4b 

Row 3 
Row 4b 
3~4b 

IH( 3P) 

0.3631 
0.4789 
0.5549 

V( 3P) 

1.0783 
1.2911 
2.1988 

HI( 1 D) 

0.3263 
0.4311 
0.4992 

V( 1 D) 

1.0647 
1.2750 
2.1720 

IV (4S) 

0.7151 
0.9040 
1.2991 

V(1S) 

1.0460 
1.2529 
2.1351 

IV (2D) 

0.6839 
0.8641 
1.2442 

VI 

1.5121 
1.7283 
3.3344 

IV (2P) 

0.6626 
0.8370 
1.2062 

VII 

1.9910 
2.1887 
4.6381 

nucleus an electron sees a unit, net positive charge on 
the atom. In addition, in going down a column of the 
periodic table, the number of core orbitals increases, so 
that the properties of the valence orbital in the core re­
gion should be increasingly determined by the core or­
bitals. '2 (Differences in the valence orbitals due to the 
core orbitals are rather naively taken care of by the 
transfer-by-core-orthogonalization procedure.) The 
overlap integrals given in Table II contradicted expec­
tation (graphs of the alkali orbitals emphatically con­
tradicted expectation); the reason for this was not 
understood. It was speculated that the absence of d 

(12) This argument is based on that advanced by M. H. Cohen and 
V. Heine, Phys. Rev., 122, 1821 (1961). 

core orbitals in K might explain the result. Perhaps 
what was required was that each possible inner shell be 
completely filled. The results in Table II for the trans­
fers Li to Cu and Na to Cu are sufficient to do away with 
that speculation. 

In column II the transferability relations again are 
contradictory, but in columns III-VIII there is great 
regularity. However, in spite of the great similarity 
between the Si and Ge valence shells, the energy in­
tegrals calculated with the transferred orbitals for the 
most part are disappointing in their accuracy. In view 
of the pragmatic approach to transferability which has 
been adopted in this paper, this should not be altogether 
surprising. The transfer-by-core-orthogonalization 
procedure does succeed usually in making the behavior, 
for example, of the Si valence orbitals in the core region 
of Ge more similar to that of the Ge valence orbitals. 
Unfortunately this pragmatic approach does not re­
move the dependence on the Si core orbitals from the 
valence orbitals which are transferred from Si. There 
are ways of doing this.13 

A direct way of removing from a transferred orbital 
its dependence on the core orbitals of the atom from 
which it is taken, and orthogonalizing it to the core or­
bitals of the atom to which it is transferred, has been 
investigated. The transferred orbital IATC'W) ' S chosen 
to be that linear combination of the core and valence 
orbitals of atom i, and of the core orbitals of j , which 
maximizes its overlap with the valence orbital ^v(O of 

j . This is accomplished mathematically by projecting 
I/'VO) on the space spanned by the occupied orbitals of 
/ and the core orbitals of j . l i The resultant improve­
ments of this projective transfer method over the core 
orthogonalization method are small for the overlap in­
tegrals and show up in the graphs only in the core re­
gion. Only for the transfer from Si to Ge are the trans­
ferred orbitals generally good approximations to the 
true valence orbitals as judged by errors of 4% and less 
in the expectation values of the Fock operator and the 
kinetic-energy operator. The next best accuracy is at­
tained for P -»- As, where the errors increase to about 
15 %. The F0 integrals, on the other hand, have errors 
ranging from 0.1 % for Si — Ge to 8% for Cl - • Br. 
Clearly for quantitive purposes, valence-shell atomic or­
bitals are transferrable only for the calculation of in­
tegrals, such as F0, which do not depend strongly on 
those parts of the valence orbitals which overlap the 
atomic cores. This is what makes the calculations 

(13) One method is that suggested by H. F. King, R. E. Stanton, 
H. Kim, R. E. Wyatt, and R. G. Parr, /. Chem. Phys., 47, 1936 (1967). 

(14) This is a mathematically well-known transformation. A clear 
presentation of it can be found in Apendix A of P. O. Lowdin, Phys. 
Rec, 139, A357 (1965). 
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Table XVII. Slater Integrals F" over s Valence Orbitals for Negative Atomic Ions (au) 

1« HI(3P) IH(1D) IV(4S) IV(2D) IV(2P) 

Row 3 0.16277 0.33266 0.33737 0.39237 0.39548 0.39829 
Row 4b 0.15292 0.35046 0.35443 0.39095 0.39371 0.39567 
3-4b 0.16207 0.33128 0.33594 0.39030 0.39338 0.39619 

V(3P) V(1D) V(1S) VI VII 

Row 3 0.45308 0.45454 0.45647 0.51023 0.56555 
Row 4b 0.43248 0.43369 0.43543 0.47061 0.50660 
3-4b 0.45010 0.45155 0.45347 0.50616 0.56019 

" These data are for Li-, Na -, and Li - -»• Na-. 

Table XVIII. Slater Integrals F0 over p Valence Orbitals 
for Negative Atomic Ions (au) 

Row 3 
Row 4b 
3-4b 

Row 3 
Row 4b 
3-4b 

III (3P) 

0.20494 
0.20258 
0.20411 

V(3P) 

0.33931 
0.31580 
0.33511 

IH(1D) 

0.18517 
0.18415 
0.18441 

V(1D) 

0.33385 
0.31091 
0.32965 

IV (4S) 

0.28452 
0.27452 
0.28231 

V(1S) 

0.32658 
0.30430 
0.32240 

IV (2D) 

0.27254 
0.26294 
0.27037 

VI 

0.39610 
0.35692 
0.38923 

IV (2P) 

0.26263 
0.25433 
0.26149 

VII 

0.45265 
0.39689 
0.44245 

relevant to molecules, as will be discussed at the end 
of this section. 

On the basis of the usual arguments concerning the 
relative penetration of s and p orbitals into the core re­
gions,1S one might have expected p orbitals to be more 
transferable than s orbitals. The calculations in this 
paper do not show this to be the case generally. 

Although the pattern of transferability in the part of 
the periodic table which has been explored cannot be 
explained here, it can be correlated with the ionization 
potentials of the elements. In addition, an indication 
of why there should be a correlation can be made, and 
on the basis of these observations other pairs of atoms 
can be selected, for which the valence-shell orbitals 
should be transferable. In Table XX are presented the 

(15) Cf. H. E. White, "Introduction to Atomic Spectra," McGraw-
Hill Book Co., Inc., New York, N. Y„ 1934, Chapter VII. 

first ionization potentials of a relevant portion of the 
periodic table. Comparison of this table with Tables 
II, III, XI, and XII shows that where there are small 
percentage differences in the ionization potentials of 
elements in the same column of the periodic table, the 
valence orbitals will be transferable to some degree. 
The greatest transferability as determined in the pre­
ceding section does not, however, correlate with the 
smallest percentage differences in the ionization poten­
tials, i.e., the relationship is not one-to-one. However, 
the correlation is mathematically reasonable. 

The correlation is made to be reasonable by recalling 
that for all closed-shell configurations and a few open-
shell configurations, the ionization potential is approx­
imately equal to the eigenvalue of the smallest occupied 
orbital. In general, the ionization potential is equal 
approximately to the orbital energy plus correction 
terms. Recently it has been shown that for large r a 
radial function will be essentially exp( — -\/2\7\r), where 
e is the energy of the smallest occupied orbital.16 In 
Table XXI the orbital eigenvalues are given for the 
elements studied. Note that the observed degree of 
transferability of valence orbitals correlates well with 
the orbital energies. It thus appears that valence or­
bitals having equal e's are, outside the core region, 
nearly equal, which is what one expects for sufficiently 

(16) N. C. Handy, M. T. Marron, and H. J. Silverstone, Phys. Rev., 
180, 45 (1969). 

Table XIX. Total Electronic Energies (au) for Negative Atomic Ions 

Row 4b 
3-4b 

Row 4b 
3-4b 

1» 

-161.855 
-161.837 

IV(2P) 

-2075.317 
-2075.123 

III (3P) 

-1923.260 
-1923.150 

V(3P) 

-2234.222 
-2233.856 

III (1D) 

-1923.239 
-1923.127 

V(1D) 

-2234.185 
-2233.818 

IV (4S) 

-2075.394 
-2075.203 

V(1S) 

-2234.131 
-2233.762 

IV (2D) 

-2075.347 
-2075.154 

VI 

-2399.904 
-2399.226 

VII 

-2572.535 
-2571.370 

0 These data are for Na - and Li - -*• Na-. 

Table XX. First Ionization Potentials (eV) of the Elements in Their Ground States3 

Period 

1 
2 
3 
4a 
4b 
5a 
5b 

H 
Li 
Na 
K 
Cu 
Rb 
Ag 

-I . 

13.595 
5.390 
5.138 
4.339 
7.724 
4.176 
7.574 

Be 
Mg 
Ca 
Zn 
Sr 
Cd 

-II . 

9.320 
7.644 
6.111 
9.391 
5.692 
8.991 

B 
Al 

Ga 

In 

-III . 

8.296 
5.984 

6.00 

5.785 

. 

C 
Si 

Ge 

Sn 

-IV . 

11.256 
8.149 

7.88 

7.342 

• 

N 
P 

As 

Sb 

-V . 

14.53 
10.484 

9.81 

8.639 

O 
S 

Se 

Te 

-VI . . 

13.614 F 
10.357 Cl 

9.75 Br 

9.01 I 

-VII s 

17.418 
13.01 

11.84 

10.54 

He 
Ne 
Ar 

Kr 

Se 

VIII . 

24.581 
21.559 
15.755 

13.996 

12.127 
0 These values were taken from the "American Institute of Physics Handbook," McGraw-Hill Book Co., Inc., New York, N. Y., 1963. 
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Table XXI. Neutral Atom Valence Orbital Energies (au) for s Symmetry 

Row II III IV (3P) IV (1D) V(4S) V(2D) 

1 
2 
3 
4a 
4b 

-0.5000 
-0.1963 
-0.1821 
-0.1474 
-0.2367 

-0.3093 
-0.2530 
-0.1955 
-0.2925 

-0.4947 
-0.3935 

-0.4245 

-0.7056 
-0.5399 

-0.5533 

-0.7187 
-0.5476 

-0.5609 

-0.9452 
-0.6964 

-0.6859 

-0.9636 
-0.7065 

-0.6952 

V(2P) VI (3P) VI (1D) VI (1S) VII VIII 

1 
2 
3 
4a 
4b 

-0.9763 
-0.7134 

-0.7016 

-1.2443 
-0.8796 

-0.8373 

-1.2565 
-0.8859 

-0.8429 

-1.2751 
-0.8957 

-0.8517 

-1.5725 
-1.0731 

-0.9927 

-0.9180 
-1.9305 
-1.2775 

-1.1529 

Table XXH. 

Row 

1 
2 
3 
4b 

1 
2 
3 
4b 

Neutral Atom Valence Orbital Energies 

III 

-0.3099 
-0.2102 
-0.2085 

VI (3P) 

-0.6319 
-0.4374 
-0.4028 

IV (8P) 

-0.4333 
-0.2971 
-0.2873 

VI (1D) 

-0.6007 
-0.4154 
-0.3822 

(au) for p Symmetry 

IV (1D) 

-0.3813 
-0.2609 
-0.2518 

VI (1S) 

-0.5555 
-0.3835 
-0.3524 

V(4S) 

-0.5675 
-0.3917 
-0.3695 

VII 

-0.7300 
-0.5065 
-0.4571 

V(2D) 

-0.5086 
-0.3506 
-0.3302 

VIII 

-0.8505 
-0.5912 
-0.5241 

V(2P) 

-0.4713 
-0.3243 
-0.3050 

large r. It is interesting that larger r appears to be r 
outside the core region. (This does not mean that the 
orbitals are just exp(— -\/2\e\r) exterior to the core.) 
Study of Tables XXI and XXII further suggests that if 
the qualitative mathematical arguments are correct, it 

bitals does not. Transfer calculations on B to Si, C to 
P, and O to Cl gave overlap integrals smaller tha 0.99. 

P(r) 

r (a .u.) 
Figure 9. Radial parts of the B 2s and Si 3s Hartree-Fock and 
the B - • Si transfer orbitals. 

might be reasonable to transfer orbitals down and across 
the periodic table, e.g., from B to Si, from C to P, from 
O to Cl, but not from N to S or from F to Ar.17 Fig­
ure 9 suggests that for the s orbital of B and Si, the or­
bital energy is a valid guide, but Figure 10 for the p or-

(17) This is quite reasonable chemically; see F. Ephrain, "Inorganic 
Chemistry," revised by P. C. L. Thome and E. R. Roberts, Oliver and 
Boyd, London, 1954, p 65. 

P(D 

Figure 10. 
and the B -

r (a.u) 

Radial parts of the B 2p and Si 3p Hartree-Fock 
• Si transfer orbitals. 

This study is obviously related to every study which 
has revealed that there are periodicities in the properties 
of the elements. Most such studies have dealt with ex­
perimentally determined properties or with expectation 
values of such variables as the radial distance from the 
nucleus. It should not have been expected that the or­
bitals would come out to be nearly equal for many pairs 
of atoms. For example, the valence-shell orbitals of 
Si are 3 s and 3p, and those of Ge 4s and 4p. Certainly 
3s and 4s and 3p and 4p orbitals should be different in 
the way that Slater orbitals of total quantum number 3 
and 4 are different. But this study shows that they are 
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not very different. And that is why they give similar 
expectation values. 

The study most closely related to this one is based on 
pseudopotentials.18 That study does not deal with the 
properties of accurate Hartree-Fock orbitals. The 
pseudopotential method idea could be used as a partial 
explanation of the results of this paper; i.e., the valence 
orbital is primarily determined by regions exterior to the 
core.12 Another study related to the present one has 
recently been published.I9 In that study the potentials 
seen by orbitals in the Hartree-Fock-Slater approxi­
mation have been examined. These potentials, for 
radial distances larger than one atomic unit, appear to 
be quite similar in some cases for atoms in the same col­
umn of the periodic table, but unfortunately the pub­
lished graph is too small to be interpreted with accuracy. 
If the potentials are the same, then obviously the orbitals 
should be the same. However, if the potentials are the 
same except in the core region, then the question be­
comes why are they the same. 

Up to this point the question of the transferability of 
atomic valence-shell orbitals has been discussed as if it 
were primarily relevant to atomic properties. In fact 
its real relevance is to molecular properties and, in par­
ticular, to the question of the transferability of localized 
orbitals between molecules.2'20 This question is re­
garded by some theorists as a key question in the quan-
tative understanding of chemistry through quantum 
mechanics. The following paragraphs sketch some of 
the arguments that relate the atomic calculations to the 
molecular problem and point out how the atomic cal­
culations will influence the molecular studies which are 
beginning in this laboratory. 

The most direct way to see that there should be a 
correspondence between the atomic transferability cal­
culations and the transferability of localized orbitals is 
to consider a series of simple examples. Suppose one 
has settled on a suitable definition for the localized or­
bital of H - in LiH and NaH.21 One must expect that 
the H - orbital from LiH will differ from that from NaH 
even when the nuclear separation is R in both molecules. 
The H - orbital is transferable from LiH to NaH if it can 
be used, to a desired degree of accuracy, in place of the 
H - orbital of NaH in the calculation of a selected set of 
properties of NaH. If the separation between the 
nuclei in both molecules is decreased from R to R — 
Ai?, the effect in both cases is to increase the overlap 
between the negative- and positive-ion charge densities. 
Thus the H - orbital in each case is acted on more 
strongly by the core part of the positive ion as a result 
of the decrease in R, and it is in that part of the H - or­
bitals which overlaps the core region of the positive 
ions that the two H - orbitals should differ most. (This 
picture is consistent with the atomic calculations.) 
Outside the core region of the positive ion, both Li+ 

and Na+ are the sources of essentially the same po­
tential, that due to a single positive charge.22 Thus as 

(18) B. J. Austin and V. Heine, J. Chem. Phys., 45, 928 (1966). 
(19) A. R. P. Rau and V. Fano, Phys. Rev., 167, 7 (1968). 
(20) C. Edmiston and K. Ruedenberg, J. Chem. Phys., 43, S97 

(1965). 
(21) Reference 2 contains a rather complete list of suggested methods 

of defining and calculating localized orbitals. 
(22) It is possible to derive equations from which localized orbitals 

can be calculated without first calculating molecular orbitals. The 
effective potentials appearing in these equations are made up of local 
coulombic potentials, and nonlocal potentials. Overlap corrections 
are present in each potential. The most recent proposal of this sort is 

R decreases, it is plausible that the transferability of the 
H - orbital from LiH to NaH should decrease. In the 
limit of the united atom LiH becomes Be and NaH be­
comes Mg. The H - orbital becomes in Be, the 2s or­
bital, and in Mg, the 3 s orbital. If the 2s orbital were 
accurately transferable from Be to Mg, then one would 
expect the H - orbital of LiH to be transferable to NaH 
at a given R value. This is one of the considerations 
that initiated the study described in this paper. 

The arguments of the preceding paragraph can be ex­
tended in various ways. For example, are the F -

orbitals transferable from LiF to NaF when the nuclear 
separation in both is R? First one should eliminate 
the F - (Is)2 core by a localized orbital type transfor­
mation,23 then consider the limit of R = 0. In this 
case LiF becomes Ne and NaF becomes Ar. If the 
valence-shell orbitals of Ne are accurately transferable to 
Ar, then one might expect the F~ localized orbitals to be 
accurately transferable from LiF to NaF. In a similar 
fashion one can go on to consider other cases in which 
the localized orbitals of an atom, ion, or radical X in 
the molecule AX are transferred to a molecule BX. In 
more chemical language, the question being asked is: 
what is the effect on the orbitals of X in a molecule if B 
is substituted for A? 

It should now be clear that the studies herein de­
scribed of the transferability of valence-shell atomic or­
bitals provide a map of the periodic table which tells one 
for which substitutions of atoms the localized orbitals 
of the remainder of a molecule are most likely to be 
changed and for which they are least likely to be 
changed. Thus when molecular transferability tests 
are made, they may, in light of the atomic calculations, 
make it plausible that localized orbitals are never trans­
ferable to a useful degree of accuracy, or that they are 
generally transferable. Most likely, molecular cal­
culations will show the true situation to lie between the 
extremes. The atomic calculations will still play the 
role of a map. Programs to carry out molecular stud­
ies using nonorthogonal localized orbitals are being 
written here, and should be running before this article 
appears in print.24 

It is possible to go a step further and argue that the 
atomic calculations have made it highly probable that 
for certain favorable cases, e.g., Si -*• Ge, the substitu­
tion of one congener for another should have a small 
effect on the electronic total energy, and that accurate 
molecular orbitals might be derived from transferred 
localized orbitals. If the molecular orbitals are local­
ized onto atoms, then the localized orbitals should be 
large about each atom and contain small distortions 
about neighboring nuclei.25 For the sake of argument, 
suppose that the contribution to a localized orbital from 
the core region about a neighboring atom A accounts for 
0.1 electronic charge. Also, suppose that the atomic 
calculations show that substitution of atom B for 
atom A leads to a 50% error in some matrix element 

by D. Peters, ibid., Sl, 1559 (1969). Cf. ref 2 and W. H. Adams, 
ibid., 37, 2009 (1962). 

(23) See the references cited in footnote 21. 
(24) The calculations of Edmiston and Ruedenberg show that the 

orthonormal equivalent orbitals are generally not transferable (see foot­
note 20.) The nonorthogonal localized orbitals which have been 
suggested here should be more transferable for the reasons given in ref 2. 

(25) Preliminary localized orbital analysis of HeNe, LiF, and NaCl 
according to the scheme of ref 2 have shown their distortion relative to 
isolated atoms and ions to be quite small. 
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in the atomic calculations. One might expect then 
that, in two molecules which differ only in the sub­
stitution of B for A, the localized orbitals of the rest of 
the molecule containing A could be used to calculate 
the corresponding molecular matrix element with an 
error of the order of magnitude of 5%; i.e., the 50% 
error in the atomic case is weighted by the contributions 
of the A and B atomic core regions to the localized 
orbital. Thus, although atomic transferability as tested 
in this paper is shown not to be an accurate method for 
approximating atomic orbitals, localized orbitals may 
be transferable to a useful accuracy; but that can be 
demonstrated only by direct calculation. 

If one assumes that localized orbitals for some kinds 
of molecules will be transferable to a useful degree of 
accuracy, one is led to consider the physical conse­
quences of the transferability. For example, one 
should consider the possibility that the potential 
surfaces of these molecules may be interrelated except 
for core contributions. To be more specific, if the 
H - orbital is transferable in the case of LiH and NaH, 
one might expect that the potential curves of each at 
identical nuclear separations will differ primarily due 
to the differences between the Li+ and Na+ ions, differ­
ences which should become pronounced only as the 
hydrogen nucleus penetrates into the Li and Na core 
regions. If this is the case, can the corrections be 
introduced without resort to full electronic calculations? 
Clearly these are not the only speculations one can 
make if one assumes that there are transferable localized 
orbitals; but it is also clear that the next step needed is 
molecular transferability calculations, not extensive 
speculations. 

Conclusions 

One general conclusion to be drawn from this study 
is that ab initio Hartree-Fock valence atomic orbitals 

I n the analysis of absorption band shapes of electronic 
transitions thought to be vibronically induced a 

simplifying assumption is often made, namely that the 
intensity distribution with respect to the vibronically 
active mode consists at O0K of but a single line, this 

have properties consistent with the idea of chemical 
periodicity. This is a very interesting result since these 
orbitals contain no adjustable parameters on which one 
might build in the periodicity. The periodicity is a 
consequence of the quantum mechanical equations. 
Some implications of this have been discussed. In 
addition to this general conclusion, the following 
specific conclusions may be drawn from the calcula­
tions. 

The atomic valence-shell Hartree-Fock orbitals of 
congeners are generally about the same size and in 
some cases are nearly identical except in the atomic 
core region. The differences in the core region when 
two valence orbitals are nearly identical outside of the 
core seem to be due primarily to the valence orbitals 
being orthogonal to different core orbitals. The 
accuracy to which the valence-shell orbitals of one 
atom approximate those of another depends upon the 
energies of the valence orbitals of each symmetry 
being nearly equal for the two atoms. This means that 
the valence-shell orbitals of two atoms may be nearly 
identical even though they are not congeners. The use 
of the valence-shell orbitals of one atom as approxima­
tions to the valence-shell orbitals of another atom is not 
justified in the calculation of most energy integrals. 
The Slater two-electron integrals can be approximated 
in this way with errors of less than 10% for transfers of 
valence orbitals from third- to fourth-period congeners 
in columns III through VI. 
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0 -»• 1 transition being in effect a false origin upon which 
are built normal Franck-Condon distributions with re­
spect to the remaining modes, including the totally 
symmetric vibration. At higher temperatures there 
would be two origins, corresponding to Av = ± 1 , where 
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Abstract: Intensity distributions associated with vibronically induced electronic transitions are calculated by a 
method in which the vibrational wave functions of both the initial and final electronic states are expanded in a trun­
cated basis of harmonic oscillator eigenstates. Results are given for transitions between harmonic oscillators 
with different force constants, between harmonic oscillators with different equilibrium positions, and between a har­
monic oscillator and a double-minimum well. The distributions are characterized by their spectral moments and by 
bar-graph plots of the spectra. Comparisons are made to the corresponding Franck-Condon distributions for an 
allowed transition, showing differences that might serve as evidence for a vibronic intensity mechanism in an ex­
perimental spectrum. 
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